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ABSTRACT 
 
As a rule, blur is a form of bandwidth reduction of an ideal image owing to the imperfect image formation process. It can be 
caused by relative motion between the camera and the original scene, or by an optical system that is out of focus.  

Today there are different techniques available for solving of the restoration problem including Fourier domain 
techniques, regularization methods, recursive and iterative filters to name a few. But without knowing at least approximate 
parameters of the blur, these filters show poor results. If incorrect blur model is chosen then the image will be rather 
distorted much more than restored. 

The original solution of the blur and blur parameters identification problem is presented in this paper. A neural network 
based on multi-valued neurons is used for the blur and blur parameters identification. It is shown that using simple single-
layered neural network it is possible to identify the type of the distorting operator. Four types of blur are considered: 
defocus, rectangular, motion and Gaussian ones. The parameters of the corresponding operator are identified using a similar 
neural network. 

After a type of blur and its parameters identification the image can be restored using several kinds of methods. Some 
fundamentals of image restoration are also considered. 
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1. INTRODUCTION 
 
As a rule, blur is a form of bandwidth reduction of an ideal image owing to the imperfect image formation process. It can be 
caused by relative motion between the camera and the original scene, or by an optical system that is out of focus. When 
aerial photographs are produced for remote sensing purposes, blurs are introduced by atmospheric turbulence, aberrations in 
the optical system, and relative motion between the camera and the ground. Such blurring is not confined to optical images, 
for example electron micrographs are corrupted by spherical aberrations of the electron lenses, and CT scans suffer from X-
ray scatter. 

Today there are different techniques available for solving of the restoration problem including Fourier domain 
techniques, regularization methods, recursive and iterative filters1,2, to name a few. All of the existing techniques are 
directed to the obtaining of a solution for the deconvolution problem. But without knowing at least approximate parameters 
of the blur, these filters show poor results. If incorrect blur model is chosen then the image will be rather distorted much 
more than restored. All of the known filters are trying to build a model of blur: blurring function and its point spread 
function. More complex of them also try to make some assumptions about the ideal image and even create some 
approximation of it. Many of different algorithms for blur identification and identification of its parameters exist today, for 
example, the maximum likelihood blur estimation3 or regularization approach4. The disadvantage of these algorithms is their 
computing complexity and relatively high level of the misidentification. 

In this paper we would like to present an original solution of this problem. As it was said, to restore the blurred image, it 
is very important to know the type of the blur and to estimate its parameters. This knowledge is the knowledge of the 
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mathematical model of the corresponding distorting operator. A precise estimation of the parameters, which the 
corresponding model depends on, is also very important for the restoration of the blurred image. 

The background for our solution is based on the learning of the specific distortions that are implied by the distorting 
operator in the Fourier spectrum amplitude (see Fig. 1). To identify the distorting operator, its mathematical model and its 
parameters, we will put this problem to the field of the pattern recognition. So on our consideration a type of blur 
identification is a classification problem. The estimation of the blur parameters is also a classification problem. 

 

   
(a) (b) (c) 

Fig. 1. Influence of the blur on Fourier spectrum amplitude: (a) – spectrum amplitude of the image that is not corrupted; (b) – spectrum 
amplitude of the same image corrupted by the Gaussian blur; (c) – spectrum amplitude of the same image corrupted by the rectangular 

blur 

 
To solve the classification problem, we will use a neural network based on multi-valued neurons (MVN)5. It will be used 

for the recognition (identification) of the distorting operator or kind of blur. A similar MVN-based neural network will be 
used to recognize the corresponding distorting operator parameters. The multi-valued neurons have many wonderful 
properties. Main of them is the high functionality and simplicity of learning. It will be shown that using simple single-
layered MVN-based neural network it is possible to identify the type of the distorting operator. We will consider four types 
of blur: defocus, rectangular, motion and Gaussian ones. The preliminary results for the blur and type of blur identification 
problem have been presented in6, but just motion and Gaussian blur have been considered, also as the restoration technique 
itself has not been presented. 

After a type of blur and its parameters identification the image can be restored using several kinds of methods. Some 
fundamentals of image restoration will be considered. The image restoration (using the information obtained by the neural 
network) by Tikhonov regularization will be presented. 

 
2. GENERAL APPROACH TO THE RESTORATION PROBLEM 

 
The image restoration problem is usually formulated in the following way. The restoration of the image is reduced to the 
obtaining of the non-distorted image ),( ηζz  from the given equation: 
 

+Az ),( yxun = + =),( yxn ),(~ yxu , (x, y)∈  W, (1) 

 
where (Z, U –metric spaces) is a given linear or nonlinear operator, zUZA →: ∈Z, u∈U,  is a noise, ),( yxn ),(~ yxu  
is an output distorted image. 

The most universal principles of solving this problem are formulated in the statistical estimation theory, and in the 
theory of solving of the ill-posed problems2, 7, 8. Beside the existing general rules, the methods of restoration are based on 
the use of the specific features of a particular problem (simplicity of the distortion operator, existence of a known 
background, etc.). However, regardless of what approach we use, the restoration problem can not be solved using empirical 
methods, that are so effectively applied to other problems of the image processing. The restoration problem is a typical 
inverse problem of mathematical physics, and as any other inverse problem it can be solved only by the corresponding basic 
mathematical methods. 

It is evident that whatever method we use to obtain the restored image, it must comply in a certain way with the basic 
equation (1). I.e., it must provide the closeness of the left and the right sides in (1). So the most general formulation of the 
restoration problem can be reduced to the following functional minimization: 
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where Uρ  is a certain metric in U. In general it is possible to use different definitions of a distance Uρ  between two 
images. 

It is easy to show that the solution of the optimization problem (2) is not unique even when operator A and the distorted 
image u(x,y) are given exactly, without any noise. We should use a priori information about the required ),( ηζz  to choose 
a unique and stable solution from the whole solutions set, as for any underdetermined problem. 

The simplest way to guarantee the uniqueness and stability of the solution is to formulate “a priory” information about 
the original image using a functional  that possesses stabilizing properties)(zΩ 6. In this case the image restoration problem 
can be reduced to the conditional or unconditional optimization problem, in particular to the Tikhonov minimization: 
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where α  is the parameter of the regularization. Usually it is assumed that the original image is a smooth function with 

respect to Sobolev space, and a stabilization functional in (3) is 
q

W p
q

zz =Ω )( . However, it is possible to obtain the new 

results of restoration considering an image set as a set of the functions of bounded variations7. From this definition it 
follows that:  
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If a space U is defined as the Euclidian space with respect to the norm (u,Bu), where B is a positive defined operator, we 
obtain the following: 
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It should be noted that the statistical methods used in image restoration lead to the optimization problems similar to (3). 
Thus using Bayes strategy or MAP test we obtain the optimal estimation in the following form: 
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where p(z) and )(ξq  are a priori probability densities of an original image ),( ηζz  and the additive noise 

.~),( uAzyx −=ξ   
The main essential difference between the regularization method of image restoration (3) and the statistical method (5) is 

the existence of the regularization parameter α in (3). It is necessary to point out that the opportunity of obtaining a family 
of solutions that depend on a parameter α  is very important. This allows us to control the visual quality of the image 
restoration interactively in the absence of a mathematical criterion of visual image quality. 
 

3. IMAGE RESTORATION TECHNIQUES 
 
The most universal techniques of solving the restoration problem are given in the regularization theory2, 8. In this case the 
solution of restoration problem comes to finding out the unconditional extremum, in particular, to searching the minimum of 
the functional (3). 

Unfortunately, it is problematic to solve the minimization problem in the general two-dimensional case using a direct 
implementation of the minimization. The possibility of simplification the minimization task is usually based on the usage of 
specific features of the integral operator A . The imaging system in signal processing is usually described by a 



homogeneous operator. If in this case the degraded image ( ),u x y  is given on the whole of plane ( ) ( ), ,x y ∈ −∞ ∞  the 
equation (1) comes to the convolution type equation: 
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The equation (6) can be solved by using the Fourier transform technique. As the matter of fact, the degraded image 

 is defined on a bounded domain W . It does not permit to apply the Fourier transform directly to the equation (6). 
To overcome this restriction an additional procedure is required to extend the definition of the degraded image onto the 
whole plane ( ) .  

( ,u x y)

)(, ,x y ∈ −∞ ∞
The convolution nature of the equation (6) implies that its equivalent Fourier representation is 
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As it was mentioned above, an effective implementation of the general solution of the image restoration problem given 
by equation (3) is difficult due to very large image dimensions. This drawback significantly restricts the wide usage of 
Fourier approach. In particular in image restoration the Fourier technique still is the most dominant9. 

We would like to note that the Fourier technique has at least two drawbacks: (a) this method is only applicable for 
solving of equations of the convolution type and (b) in a direct way, it can only be used for implementation of linear 
restoration algorithms when  and Uρ ( )zΩ  in (3) are quadratic forms.  

It is known8 that the general linear solution of the equation (6) can be written as 
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where the kernel of the inversion has the following form 
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and ( , )x yf fΨ  is a given function.  

Thus, ( , )z ξ η  can be found by taking the inverse Fourier transform of  

( , ) ( , ) ( , ).x y x y x yZ f f R f f U f f= %  

When the noise  in (7) is absent, the obvious filter is the inverse filter  ( , )x yN f f
1( , ) ( , )x y x yR f f H f f−=  

However, the inverse filter may not exist if ( , )x yH f f  possesses singularity. In the presence of noise the optimal 
restoration filter known (in the MSE criteria) is the least squares filter or the Wiener filter 
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where  and are the noise and the object power spectra, which are assumed to be known. It is also 
assumed that the noise added is a white noise, i.e., its spectral density is constant, and the picture and the noise are 
uncorrelated. This method works well only for images with a high signal to noise ratio (SNR), which is defined to be the 
ratio between the variance of the picture and the variance of the noise, and performs poorly for images with low SNRs. 

( , )nn x yS f f ( , )zz x yS f f

In our experiments as an approximate solution to equation (6) (with approximate  and ) an extremal of the 
Tikhonov’s linear functional (4) was taken, with 

A% ( , )u x y%
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In this case the restored image ˆ( , )z ξ η is defined by the formula (8) where the kernel of the inversion has the following 
form 
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As it is known2 regularization parameter values 0 < α  < 1 and 0 <β < 1 depend on the noise level and on the targets of 

research. In restoration of the modeled distortions, when input data are given exactly, without errors, the restoration was 
started from the inverse filtering with = 0. When noise was present, the regularization parameters α  and α β  in (11) were 
taken according to visual quality of the result, but not according to mathematical criteria8. 

 
4. MULTI-VALUED NEURON AND ITS LEARNING 

 
As it was mentioned above, we will use a neural network based on multi-valued neurons (MVN) for the blur and blur 
parameters identification. Let us consider some fundamentals of MVN, its learning and networks based on it.  

MVN has been introduced in10 and it is deeply considered in5. MVN performs a mapping between n inputs and a single 
output. The mapping is described by multiple-valued (k-valued) function of n variables  via their 

representation through n+1 complex-valued weights : 
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where  are variables, on which the performed function depends. Values of the function and of the variables are 

k
nx ..., ,x1

th roots of unity: , , i is an imaginary unity. P is the activation function of the neuron: )2exp(  j/kij π=ε }10{ k- ,j∈
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where j=0, 1, ..., k-1 are values of the k-valued logic, nn xw...xwwz +++= 110  is the weighted sum , arg(z) is the 
argument of the complex number z. The equation (13) is illustrated in Fig. 2. 
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Fig. 2. Definition of the MVN activation function. If the weighted 

sum is equal to z then the output is equal to  2-kε
Fig. 3. The problem of MVN learning 

 
For MVN, which performs a mapping described by the k-valued function, we have exactly k domains. Geometrically 

they are the sectors on the complex plane (Fig. 2).  
The MVN learning is based on the same background as the perceptron learning. It means that id the weighted sum is 

going to the “incorrect” domain then the weights might be corrected in some way to direct the weighted sum into the correct 
domain. Let us consider this process in the details. It is illustrated in Fig. 3. If the desired output of MVN on some element 
from the learning set is equal to  then the weighted sum should be exactly in the sector number q. But if the actual output 
is equal to ε , it means that the weighted sum is currently in the sector number s. A learning rule should correct the weights 
to move the weighted sum from the sector number s to the sector number q. The following correction rule for learning of the 
MVN has been proposed

εq

s

5: 
 

X -εε+CWW sq
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where W  and W  are the current and the next weighting vectors, m 1m+ X  is the complex-conjugated vector of the neuron’s 

input signals, C is the scale coefficient.  m
Learning algorithm, which is based on the rule (14) is very quickly converging.  
 

5. MVN-BASED NEURAL NETWORK AND ITS APPLICATION TO THE BLUR IDENTIFICATION 
 

We will use here a single-layer MVN-based neural network, which contains the same number of neurons as a number of 
classes we have to classify5, 11. Each neuron has to recognize pattern belonging to its class and to reject any pattern from any 
other class. The architecture is presented in Fig. 4. 

As it was mentioned above, the blur leads to the specific distortion of 
the image Fourier spectrum amplitude. This distortion can be clearly 
detected as a disappearance of the high frequency part of the image 
Fourier spectrum amplitude. A character of this disappearance is very 
specific for the different types of blur. Fig. 5 illustrates this important 
property. 

Thus the Fourier spectrum amplitude contains the important 
information about the signal properties (existence of noise, blur, etc.). 
This means that it is possible to use it for the identification of blur, its type 
and parameters. The idea to analyze the spectrum amplitude using neural 
network is based on the following considerations. We do not need to 
analyze data itself, data as a formal set of numbers. Our target is to 
“catch” the behavior of the spectrum amplitude. A neural network has to 
be taught to distinguish a specific behavior corresponding to each type of 

blur independently on the particular image. Since we do not know a low, by which this behavior might be described in the 
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Fig. 4. MVN based neural network 

for pattern recognition



analytical form, the use of the neural network is almost ideal solution. Indeed, a fundamental property of the neural network 
is its ability to accumulate the knowledge about the objects using the learning process, in the conditions, when a mapping 
between its inputs and outputs can not be defined in analytical form. 
 

  
(a) The original image (b) Spectrum amplitude of the original image 

    
(c) Gaussian blur, var=2 (d) Gaussian blur, var=4 (e) Defocus blur, r=4 (f) Defocus blur, r=6 

    
(g) 1D Motion blur, 4 pixels (h) 1D Motion blur, 6 pixels (i) Rectangular blur 4x2 (j) Rectangular blur 8x4 

Fig. 5. Fourier spectrum amplitude and its distortion implied by the different blurs 
 

To organize the learning process for the network presented in Fig.4, the following reservations of the domains has been 
used. The output values 0,..., k/2-1 of the ith neuron correspond to the classification of object as belonging to ith class. The 
output values l,..., k-1 correspond to the classification of object as rejected for the given neuron and class (k is taken from 
(13)). This reservation of the domains is shown in Fig.6a.To prepare the data for the learning and further recognition we 
used the normalization procedure based on the logarithmic quantization. 

To ensure the accumulation by the neural network a stable knowledge about the blur, those spectrum amplitudes have to 
be used, which belong either to the regions, where the amplitude is not distorted and where it is distorted. The best way to 
do it is the extraction of the amplitude values using the “zigzag” rule (Fig. 6b). It is necessary to take into account that the 
2D Fourier spectrum amplitude of the image (which is a real-valued signal) has a central symmetry property. It means that 
we need to use just a half of the amplitudes corresponding to each frequency (Fig. 6b). 
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(a) Reservation of the domains for the recognition (b) Extraction of the Fourier spectrum amplitudes 
using the “zigzag” rule according to their frequency 

ordering  
Fig. 6. Reservation of the domains and extraction of the data for the blur identification 

 
To test abilities of the blur and blur parameters identification, we used four kinds of blur: Gaussian, Defocus, 1D 

horizontal motion and rectangular ones. The images of different nature have been used: landscapes, satellite optical images, 
face images. The images were blurred by the mentioned blurs with the different parameters. To make our model more 
realistic, we corrupted the images by zero-mean Gaussian noise with the dispersion 0.3σ. 

For the blur identification 140 images have been taken. Since a spectrum amplitude behavior for the rectangular and 
defocus blurs is often very similar, we use two-stage blur identification. Three classes have been considered on the first 
stage: Gaussian, 1D motion, Rectangular/Defocus. The testing results are very good: 95-97% of the correct identification. If 
the corresponding blur was classified as “Rectangular/Defocus”, we used additional single-layered neural network from two 
neurons (with the same architecture, see Fig.4) to identify exactly is it rectangular or defocus. The results are good. For the 
94% of the images the identification is correct. The rest of 6% corresponds to defocus with a small radius (1) and the 
rectangular blur 1x1. 

For blur parameters recognition 25 classes with different rectangular blurs were created. Steps for rectangular blur 
parameters are equal to 2 pixels in both directions (i.e. 1x1, 1x3, …, 1x9, 3x1, …, 3x9, …. 9x9). These 25 classes contain 
500 images in the testing set (20 per class), and 12 images per class in the learning set, which is 300 images. To test the 
Gaussian blur variance identification 5 classes were distinguished (with variance 1 to 5, 200 images per class). Respectively, 
the defocus blur radius identification has been tested for the 15 classes (radius from 2 to 16, 500 images per class), 1D 
horizontal motion blur has been tested for the 16 classes (motion from 3 up to 18 pixels) and rectangular blur parameters 
identification has been tested for the 32 classes (1x1, 1x2, 2x1, etc). 

The results of the testing are summarized in the Table 1. It is evident that they are very promising. 
 
Table1. Blur parameters identification testing. 
 

Type of blur Average level of successful parameters identification 
Gaussian blur 93.5 % 
Defocus blur 94.1 % 
Motion blur 98.1% 

Rectangular blur 95.6% 
 
 

6. SIMULATION RESULTS 
 

The importance of the proposed solution for the blur identification is very high. The image restoration problem cannot be 
solved without the effective solution of blur and blur parameters identification problem. Indeed, it is impossible to identify 
the blur, moreover, its parameters visually. The blurred images often are very similar to each other from visual point of view 
(see Fig. 7) 

 



    
Gaussian blur, var=4 Defocus blur, radius=4 1D motion blur, 4 pixels Rectangular blur 8x4 

Fig. 7. The examples of the different blurs for the original image presented in Fig. 5a 
 

So to identify a type of blur and then to identify its parameters we used the neural network and the algorithm presented 
here. Then the images have been restored using the Tikhonov’s regularization (8)-(11). 

Let us consider two examples of the image restoration. The first one is presented in Fig. 8. This is the restoration of the 
artificially blurred images from the Fig.7. These images didn’t participate in the learning process. The blur and its 
parameters were correctly identified in each case using the neural network. One may compare the restoration results to the 
original image in Fig 5a and to the corresponding blurred images in Fig. 7. 

 

    
Restoration 

Gaussian blur, var=4 
Restoration 

Defocus blur, radius=4 
Restoration 

1D motion blur, 4 pixels 
Restoration 

Rectangular blur 8x4 
Fig. 8. Restoration of the artificially blurred images presented in Fig. 7 using the blur identification and the Tikhonov filter 

 

  
(a) The original blurred image (b) The restoration result. The blur has been identified as 

rectangular one, 3x1.  
Tikhonov filter has been used for the restoration 

Fig. 9. Restoration of the originally (optically) blurred image 
 

The next example shows the restoration of the originally (optically) blurred image. This example is shown in Fig. 9. 



The same technique is applicable to the color images. The blur and blur parameters identification can be applied 
separately for the color channels. The restoration can also be performed separately for each channel. 

A special case is the processing of the images with the dimensions not equal to power of 2. It is a usual case in real life, 
but a special case from the point of view of implementation because of well known fact that the fast Fourier transform 
algorithms exist just for the dimensions equal to power of 2. A usual solution in this case is image extension to the closest 
power of 2 in both directions. At the same time a simple even extension of the image can’t be recognized as an optimal 
solution because it leads to the appearance of the boundary effects on the restored image. To avoid these effects we suggest 
using the original apodization technique. 

It is a well-known fact, that any correction of the spectrum is immediately followed by appearance of edge effect on the 
processed image. To handle this effect some methods exist, for example symmetric extension or periodic extension of the 
image. But both of these algorithms do not remove sharp discontinuities on the image.  

The Fourier transform itself assumes that signal is periodic and thus if left side of the image doesn’t join right side 
smoothly (same for the top and bottom), in case of big edge difference, edge effect will appear. The proposed algorithm 
eliminates this edge difference. 

For one-dimensional case idea is following. Suppose we have function f(x) given on the interval [a,b]. Then f(a+b-x) 
will be an inverse of f(x) on the same interval. Let’s build simple symmetric extension of f(x) to the left and to the right of 
[a,b]: 
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Now let us build the function that will smooth the edges: 
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Let us smooth the edges: 
h(x)=g(x)T(x) (17) 
 
And now let’s make a periodical function Fper(x) with period δ2 : 
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Because in image processing we are dealing with the functions with finite support, the following function will be subdued to 
the Fourier transform: 
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The idea of apodization for two-dimensional functions is the same, and can be formulated as two 1D apodizations: 
horizontal and vertical. This apodization is preferable when image size is not a power of two (which is the limitation of 
FFT), and also can be used to extend image size to the next power of two if it is needed. Fig. 10 shows the example of this 
apodization applied to an image of the dimensions 200x200 to extend to 256x256. Just for comparison Fig. 10(b) contains 



image extended symmetrically in all directions. Both images (b) and (c) are shifted, so it is visible how the borders will join. 
Note the sharp discontinuities on the image (b) and how they are smoothed on image (c). 
 

 
(a) Original image (200x200) 

  
(b) Symmetric extension of original (256x256) shifted by 
128 pixels in every direction 

(c) Described Apodization (256x256) shifted by 128 pixels 
in every direction 

Fig. 10. Apodization Demonstration 
 
 

7. CONCLUSIONS AND FUTURE WORK 
 

The main result of the presented work is the effective and original image restoration technique carried out in the paper. The 
key point of this technique is blur (distorting operator) and its parameters identification using the neural network based on 
multi-valued neurons. The results of this identification are used as the main parameters for the image restoration using the 
Wiener, Tikhnov or inverse filters. The future work will be directed to the consideration of more blurs, including the 
combinations of several different blurs and to the development of the restoration technique. 
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